update readme and setup script to support official BitNet b1.58 model (#171)

* update readme and setup file for new model.

* update model file name

---------

Co-authored-by: Yan Xia <yanxia@microsoft.com>
This commit is contained in:
Yan Xia 2025-04-15 14:53:56 +08:00 committed by GitHub
parent fa854cf8f8
commit fd3f355a0b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 48 additions and 9 deletions

View File

@ -2,6 +2,8 @@
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
![version](https://img.shields.io/badge/version-1.0-blue)
<img src="./assets/header_model_release.png" alt="BitNet Model on Hugging Face" width="800"/>
bitnet.cpp is the official inference framework for 1-bit LLMs (e.g., BitNet b1.58). It offers a suite of optimized kernels, that support **fast** and **lossless** inference of 1.58-bit models on CPU (with NPU and GPU support coming next).
The first release of bitnet.cpp is to support inference on CPUs. bitnet.cpp achieves speedups of **1.37x** to **5.07x** on ARM CPUs, with larger models experiencing greater performance gains. Additionally, it reduces energy consumption by **55.4%** to **70.0%**, further boosting overall efficiency. On x86 CPUs, speedups range from **2.37x** to **6.17x** with energy reductions between **71.9%** to **82.2%**. Furthermore, bitnet.cpp can run a 100B BitNet b1.58 model on a single CPU, achieving speeds comparable to human reading (5-7 tokens per second), significantly enhancing the potential for running LLMs on local devices. Please refer to the [technical report](https://arxiv.org/abs/2410.16144) for more details.
@ -18,7 +20,8 @@ A demo of bitnet.cpp running a BitNet b1.58 3B model on Apple M2:
https://github.com/user-attachments/assets/7f46b736-edec-4828-b809-4be780a3e5b1
## What's New:
- 02/18/2025 [Bitnet.cpp: Efficient Edge Inference for Ternary LLMs](https://arxiv.org/abs/2502.11880) ![NEW](https://img.shields.io/badge/NEW-red)
- 04/14/2025 [BitNet Official 2B Parameter Model on Hugging Face](https://huggingface.co/microsoft/BitNet-b1.58-2B-4T) ![NEW](https://img.shields.io/badge/NEW-red)
- 02/18/2025 [Bitnet.cpp: Efficient Edge Inference for Ternary LLMs](https://arxiv.org/abs/2502.11880)
- 11/08/2024 [BitNet a4.8: 4-bit Activations for 1-bit LLMs](https://arxiv.org/abs/2411.04965)
- 10/21/2024 [1-bit AI Infra: Part 1.1, Fast and Lossless BitNet b1.58 Inference on CPUs](https://arxiv.org/abs/2410.16144)
- 10/17/2024 bitnet.cpp 1.0 released.
@ -29,9 +32,38 @@ https://github.com/user-attachments/assets/7f46b736-edec-4828-b809-4be780a3e5b1
## Acknowledgements
This project is based on the [llama.cpp](https://github.com/ggerganov/llama.cpp) framework. We would like to thank all the authors for their contributions to the open-source community. Also, bitnet.cpp's kernels are built on top of the Lookup Table methodologies pioneered in [T-MAC](https://github.com/microsoft/T-MAC/). For inference of general low-bit LLMs beyond ternary models, we recommend using T-MAC.
## Official Models
<table>
</tr>
<tr>
<th rowspan="2">Model</th>
<th rowspan="2">Parameters</th>
<th rowspan="2">CPU</th>
<th colspan="3">Kernel</th>
</tr>
<tr>
<th>I2_S</th>
<th>TL1</th>
<th>TL2</th>
</tr>
<tr>
<td rowspan="2"><a href="https://huggingface.co/microsoft/BitNet-b1.58-2B-4T">BitNet-b1.58-2B-4T</a></td>
<td rowspan="2">2.4B</td>
<td>x86</td>
<td>&#9989;</td>
<td>&#10060;</td>
<td>&#9989;</td>
</tr>
<tr>
<td>ARM</td>
<td>&#9989;</td>
<td>&#9989;</td>
<td>&#10060;</td>
</tr>
</table>
## Supported Models
❗️**We use existing 1-bit LLMs available on [Hugging Face](https://huggingface.co/) to demonstrate the inference capabilities of bitnet.cpp. These models are neither trained nor released by Microsoft. We hope the release of bitnet.cpp will inspire the development of 1-bit LLMs in large-scale settings in terms of model size and training tokens.**
❗️**We use existing 1-bit LLMs available on [Hugging Face](https://huggingface.co/) to demonstrate the inference capabilities of bitnet.cpp. We hope the release of bitnet.cpp will inspire the development of 1-bit LLMs in large-scale settings in terms of model size and training tokens.**
<table>
</tr>
@ -143,12 +175,13 @@ pip install -r requirements.txt
```
3. Build the project
```bash
# Download the model from Hugging Face, convert it to quantized gguf format, and build the project
# Manually download the model and run with local path
huggingface-cli download microsoft/BitNet-b1.58-2B-4T --local-dir models/BitNet-b1.58-2B-4T
python setup_env.py -md models/BitNet-b1.58-2B-4T -q i2_s
# Or you can download a model from Hugging Face, convert it to quantized gguf format, and build the project
python setup_env.py --hf-repo tiiuae/Falcon3-7B-Instruct-1.58bit -q i2_s
# Or you can manually download the model and run with local path
huggingface-cli download tiiuae/Falcon3-7B-Instruct-1.58bit --local-dir models/Falcon3-7B-Instruct-1.58bit
python setup_env.py -md models/Falcon3-7B-Instruct-1.58bit -q i2_s
```
<pre>
usage: setup_env.py [-h] [--hf-repo {1bitLLM/bitnet_b1_58-large,1bitLLM/bitnet_b1_58-3B,HF1BitLLM/Llama3-8B-1.58-100B-tokens,tiiuae/Falcon3-1B-Instruct-1.58bit,tiiuae/Falcon3-3B-Instruct-1.58bit,tiiuae/Falcon3-7B-Instruct-1.58bit,tiiuae/Falcon3-10B-Instruct-1.58bit}] [--model-dir MODEL_DIR] [--log-dir LOG_DIR] [--quant-type {i2_s,tl1}] [--quant-embd]
@ -173,7 +206,7 @@ optional arguments:
### Basic usage
```bash
# Run inference with the quantized model
python run_inference.py -m models/Falcon3-7B-Instruct-1.58bit/ggml-model-i2_s.gguf -p "You are a helpful assistant" -cnv
python run_inference.py -m models/BitNet-b1.58-2B-4T/ggml-model-i2_s.gguf -p "You are a helpful assistant" -cnv
```
<pre>
usage: run_inference.py [-h] [-m MODEL] [-n N_PREDICT] -p PROMPT [-t THREADS] [-c CTX_SIZE] [-temp TEMPERATURE] [-cnv]
@ -246,4 +279,3 @@ python utils/generate-dummy-bitnet-model.py models/bitnet_b1_58-large --outfile
python utils/e2e_benchmark.py -m models/dummy-bitnet-125m.tl1.gguf -p 512 -n 128
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

View File

@ -41,6 +41,9 @@ SUPPORTED_HF_MODELS = {
"tiiuae/Falcon3-1B-Instruct-1.58bit": {
"model_name": "Falcon3-1B-Instruct-1.58bit",
},
"microsoft/BitNet-b1.58-2B-4T": {
"model_name": "BitNet-b1.58-2B-4T",
},
}
SUPPORTED_QUANT_TYPES = {
@ -161,6 +164,8 @@ def gen_code():
run_command([sys.executable, "utils/codegen_tl1.py", "--model", "Llama3-8B-1.58-100B-tokens", "--BM", "256,128,256,128", "--BK", "128,64,128,64", "--bm", "32,64,32,64"], log_step="codegen")
elif get_model_name() == "bitnet_b1_58-3B":
run_command([sys.executable, "utils/codegen_tl1.py", "--model", "bitnet_b1_58-3B", "--BM", "160,320,320", "--BK", "64,128,64", "--bm", "32,64,32"], log_step="codegen")
elif get_model_name() == "BitNet-b1.58-2B-4T":
run_command([sys.executable, "utils/codegen_tl1.py", "--model", "bitnet_b1_58-3B", "--BM", "160,320,320", "--BK", "64,128,64", "--bm", "32,64,32"], log_step="codegen")
else:
raise NotImplementedError()
else:
@ -177,6 +182,8 @@ def gen_code():
run_command([sys.executable, "utils/codegen_tl2.py", "--model", "Llama3-8B-1.58-100B-tokens", "--BM", "256,128,256,128", "--BK", "96,96,96,96", "--bm", "32,32,32,32"], log_step="codegen")
elif get_model_name() == "bitnet_b1_58-3B":
run_command([sys.executable, "utils/codegen_tl2.py", "--model", "bitnet_b1_58-3B", "--BM", "160,320,320", "--BK", "96,96,96", "--bm", "32,32,32"], log_step="codegen")
elif get_model_name() == "BitNet-b1.58-2B-4T":
run_command([sys.executable, "utils/codegen_tl2.py", "--model", "bitnet_b1_58-3B", "--BM", "160,320,320", "--BK", "96,96,96", "--bm", "32,32,32"], log_step="codegen")
else:
raise NotImplementedError()
@ -222,4 +229,4 @@ if __name__ == "__main__":
args = parse_args()
Path(args.log_dir).mkdir(parents=True, exist_ok=True)
logging.basicConfig(level=logging.INFO)
main()
main()